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Abstract: With the operational deployment of the Stepped Frequency Microwave Radiometer (SFMR),
hurricane reconnaissance and research aircraft provide near real-time observations of the 10 m
ocean-surface wind-speed both within and around tropical cyclones. Hurricane specialists use these
data to assist in determining wind radii and maximum sustained winds—critical parameters for
determining and issuing watches and warnings. These observations are also used for post-storm
analysis, model validation, and ground truth for aircraft- and satellite-based wind sensors. We present
observations on the current operational wind-speed and rain-rate SFMR retrieval procedures in
the tropical cyclone environment and propose suggestions to improve them based on observed
wind-speed biases. Using these new models in the SFMR retrieval process, we correct an approximate
10% low bias in the wind-speed retrievals from 15 to 45 m s−1 with respect to GPS dropwindsondes.
In doing so, we eliminate the rain-contaminated wind-speed retrievals below 45 mm h−1 at tropical
storm- and hurricane-force speeds present in the current operational model. We also update the
SFMR radiative transfer model to include recent updates to smooth-ocean emissivity and atmospheric
opacity models. All corrections were designed such that no changes to the current SFMR calibration
procedures are required.

Keywords: microwave radiometry; tropical cyclone; wind speed; rain rate

1. Introduction

The Stepped Frequency Microwave Radiometer (SFMR) is an aircraft-based, nadir-looking
microwave radiometer built by ProSensing, Inc. of Amherst, MA, USA. The instrument measures
brightness temperatures (Tbs) of the ocean surface and intervening atmosphere at six C-band
frequencies. From these Tbs, surface wind speed and average columnar rain rate can be inferred [1].
The first experimental SFMR surface wind measurements were made in Hurricane Allen in 1980 [2],
which was used to develop an early algorithm for remotely retrieving wind speed and rain rate.
The first real-time retrieval of winds on an aircraft was performed in Hurricane Earl in 1985.
In 2005 an operational SFMR was installed on a National Oceanic and Atmospheric Administration
(NOAA) hurricane research aircraft, and by 2008 this instrument was deployed on all U.S. hurricane
reconnaissance aircraft. SFMR retrievals were added to the high-density observation reports which
are transmitted in near real-time to the National Hurricane Center (NHC) for hurricane forecasting
applications [3]. Forecasters use this information to estimate surface sustained gale-force, storm-force,
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and hurricane-force wind radii as well as the maximum sustained 1 min-average wind and radius of
maximum surface wind at 10 m [4]. These analyses form the basis for advisories and warnings on peak
wind and outer wind structure [1]. In addition to being used in near-real-time to add to tropical cyclone
intensity forecasts, SFMR measurements play a major role in post-storm assessments of hurricane
intensities (e.g., as with Hurricane Katrina, with data from shortly before its Gulf landfall [5]), and are
an essential source for hurricane climatology studies. In the research domain, SFMR measurements are
being used for satellite intercalibration and high-wind geophysical model function (GMF) development
as a proxy for dropwindsondes. It is thus imperative that any calibration or retrieval errors with respect
to dropsondes are well understood, and any improvements are applied to the entire history of the
instrument.

The paper is organized as follows: Section 2.1 reviews and refines the radiative transfer model
(RTM) used in the SFMR wind and rain absorption GMF; Section 2.2 describes the surface truth
database used in this manuscript; and in Sections 2.3 and 2.4 new wind-speed and rain-absorption
models are developed and validated.

2. Materials and Methods

2.1. Instrument Description and Forward Radiative Transfer Model

Since its deployment on U.S. reconnaissance and research aircraft, SFMR has undergone design
modifications by the manufacturer. For example, early in its operational life there were fewer
thermistors installed than there currently are. In this manuscript, the term “SFMR” refers to all
the different configurations of the instrument.

The SFMR measures radiative emissions, expressed in terms of a brightness temperature of the
ocean-atmosphere system, at six C-band frequencies (or channels) spanning from 4.55 to 7.22 GHz.
The antenna is linearly polarized and has a 3 dB beamwidth of 20 to 28◦ over the frequency range.
The instrument steps through each frequency, averaging each channel for 0.5 s. Due to the additional
processing overhead, it takes approximately 4 s to step through all channels [6].

The apparent Tb of the sea surface measured by a downward looking radiometer at a height h
above the surface is comprised from four different sources (e.g., [7]):

1. Downwelling cosmic radiation that is reflected by the sea surface,
2. Downwelling atmospheric radiation that is reflected by the sea surface,
3. Upwelling sea-surface emission, attenuated by the intervening atmosphere,
4. Upwelling emission from the intervening atmosphere.

At C-band frequencies, the key contributors to properties of the atmosphere are given from the
absorption by oxygen molecules, the absorption by water vapor molecules, and the absorption and
scattering by liquid water particles. The current operational SFMR wind-speed and rain-rate retrieval
algorithm [8] uses a simplified forward radiative transfer model [7] to estimate the atmospheric
contribution to the total Tb measured by the SFMR. Given a calibrated SFMR Tb measurement, the
upwelling emissivity from the sea surface (ε) can be computed as:

ε ( f , p, θi, S, v) =
Tb − Tb,up − τr,aτa,aTb,sky

τr,aτa,a

(
Ts − Tb,sky

) , (1)

where τr,a and τa,a are the transmissivities of the rain column and atmosphere below the aircraft
respectively; Tb,sky is the downwelling brightness temperature contribution from above the ocean; Tb,up
is the atmosphere upwelling brightness temperature from below the aircraft; and Ts is the sea-surface
temperature (SST). Please note that ε is in general a function of frequency ( f ), electromagnetic
polarization (p), Earth-incidence angle (EIA) (θi), ocean salinity (S), and wind speed (v). The quantities
on the right side of the equation are functions of one or more of these parameters and, except for Tb,
are estimated from models.
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Uhlhorn and Black [1] give an equation for the downwelling sky radiation (Tb,sky) as shown in
(A4) of their appendix. Other sources in the literature (e.g., [9], in which it is referred to as TBΩ) correct
this equation to state

Tb,sky = Tb,down + (τr,∞τa,∞)Tb,cos +
Tb,scat

1− ε
, (2)

where Tb,down is the downwelling atmospheric brightness temperature, Tb,cos is the C-band brightness
temperature due to the cosmic microwave background radiation, τr,∞ is the total transmissivity of
the rain column, τa,∞ is the total atmospheric transmissivity, and Tb,scat is the atmospheric path length
correction for the downwelling sky radiation scattered off the surface. Tb,scat has been neglected in
previous SFMR GMF formulations but we include it here. The lack of this term may contribute to the
previously observed cyclone-position-dependent error in SFMR retrievals [1,10].

Tb,scat is parameterized in [9] as

Tb,scat = Ω(τ∞, v) · [Tb,down + τ∞Tb,cos − Tb,cos] · (1− ε) , (3)

where τ∞ = τr,∞τa,∞. Substituting (3) in (2), we can rewrite (2) in terms of Ω as:

Tb,sky = [Tb,down + (τr,∞τa,∞)Tb,cos] · (1 + Ω)− (Ω Tb,cos) . (4)

The values of Ω from the RSS RTM [9] are included in the model presented below. At wind speeds
above 25 m s−1, Ω is held at its value for 25 m s−1.

2.1.1. Wind Speed GMF

The driver of ocean-surface emissivity described in (1) that we are presently interested in is the
surface wind speed. There are three mechanisms that are responsible for emissivity variation with
wind speed [9]: (1) vertical and horizontal polarization mixing due to surface waves with wavelengths
much longer than the measured radiation; (2) sea foam; and (3) small-scale roughness effects. These
three effects can be parameterized in terms of the RMS slope of large-scale roughness, the fractional
foam coverage, and the RMS height of small-scale (capillary) waves. Each of these parameters depends
upon the wind speed. Since SFMR measurements are normally made at or near nadir EIA, where the
reflectivity is independent of the polarization, it is assumed that main contributors to the measured
signal are foam coverage and surface roughness.

Rain striking the ocean roughening its surface, commonly referred to as “splash”, imposes some
modulation on the surface roughness spectrum. Additional roughness effects at nadir are contributed
by the sea state, such as wave age and significant wave height. This spectrum is a superposition of the
rain spectrum and the wind spectrum. However, these splash and sea-state effects are not usually a
consideration in the SFMR retrievals due to its specialized application for high-wind operation.

Though sea-surface roughness effects dominate at lower wind speeds, the sea foam generated
by wind determines the microwave emission at high wind speeds (above 15 to 20 m s−1) [11,12].
The downwelling sky radiation scattered off the ocean surface is accounted for in the SFMR RTM, but
the rain- and ocean-state-induced roughness is not. In this manuscript all surface roughness effects
are attributed to the wind, as is the case in current SFMR and other microwave radiometer literature
(e.g., [9]). The roughness effects due to rain or sea state are not part of our investigation since they
are expected to be small but should be addressed in the future to improve microwave radiometer
operation in rain. As noted below, SFMR retrievals of wind speeds less than 15 m s−1 are not reliable
due to the sensitivity of the instrument and the lack of information about surface roughness.

The current [8] and previous [13] wind GMFs implemented in the SFMR algorithm assume a
nonlinear increase in emissivity (ε) at moderate wind speeds (above the point where roughness induces
foam generation and below hurricane force), and a linear increase at approximately hurricane-force
wind speeds. A weak-wind-speed (roughness induced) linear portion was retained in [8] to be
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consistent with previous results [14]. The total excess emissivity due to wind (EEW) at a frequency f is
split into two components as ε( f ) = ε0 + ε f ( f ). The frequency-independent part, ε0, is composed as

ε0 (U10N) =


a1U10N U10N < vl ,

a2 + a3U10N + a4U10
2 vl < U10N ≤ a0,

a5 + a6U10N a0 < U10N,

(5)

where U10N is the equivalent-neutral wind speed at 10 m, vl is the wind speed at which foam begins
to be generated, a0 is the objectively determined point where the upper two curves meet, and the
remaining ai coefficients are fitted parameters.

The frequency dependence of the EEW has been most recently modeled in [8] as a quadratic
function of wind speed multiplied with the frequency difference with the lowest-frequency channel.
The justification for using the lowest-frequency channel is that it is less affected by rain, which comes
into consideration during development of the EEW model. We argue in Section 2.3 that this fact does
not completely mitigate non-wind sources of Tb. As there is more frequent radio frequency interference
(RFI) on the lower channels due to other instruments installed on some of the aircraft (e.g., the Imaging
Wind and Rain Airborne Profiler [15]), we choose the reference channel to be the highest-frequency
channel. The ε f model used in this manuscript is formulated as:

ε f ( f ) =
(

a7 + a8U10N + a9U2
10N

)
(7.09− f ). (6)

This retains the weak quadratic dependence of ε f on wind speed from the existing operational
model but changes the second factor in (6). Since a9 is small, the quadratic effect at high wind speeds
is small.

2.1.2. Rain Absorption/Emission GMF

The transmissivity of the rain column is proportional to rain rate and electromagnetic frequency.
Its correlation with the rain attenuation (absorption and scattering) coefficient κr is given by:

τr = exp
(
− κr Hr

cos θi

)
, (7)

where Hr is the depth of rain column. The current operational SFMR retrieval process uses an
absorption model that was updated most recently in 2014 [8], developed on a long heritage ([1,13,16]).
This model has four empirically derived parameters and is given by:

κr ( f , R) = g f n(R)Rb

n(R) = cRd,
(8)

where f is the frequency, R is the rain rate, and g, c, d, and b are the parameters. In this manuscript the
retrieved rain rates in tropical environments are largely maintained, but this necessitates a change to
the parameters in (8).

2.2. External Data

The remainder of this paper uses a database of global positioning system dropwindsondes [17]
(also referred to simply as dropsondes) launched from NOAA and U.S. Air Force Reserve Command
(AFRC) aircraft from 2008 through 2018. These instruments measure pressure, humidity, temperature,
and three-dimensional position profiles as they descend; wind vectors are derived from this
information. To be consistent with other ocean-surface wind remote sensors, the desired wind speed
from the dropsonde is the equivalent-neutral wind speed at 10 m above the ocean surface (U10N).
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Sometimes the dropsonde does not report the wind vector at a height of 10 m, and even when it
does it may be reporting from an area shadowed by large ocean waves. Additionally, their point
measurements are more representative of small-scale features [18]. For these reasons, layer-averaging
techniques are typically used to estimate this value when comparing to other sensors [13,18,19]. Here
the NHC WL150 method was chosen, which uses an altitude-weighted mean of the measurements
from the lowest 150 m between 10 and 400 m.

The dropsondes were first processed with NCAR’s Aspen software. Then the filtered and
smoothed output was run through the WL150 algorithm and scaled to the surface using the equation
recommended by Uhlhorn et al. [13]. This results in an estimate of the wind speed at 10 m height (U10).
The lowest valid dropsonde measurement of air temperature, relative humidity, and air pressure along
with SST from the NOAA/NCDC AVHRR Daily-OI-V2 model were used to convert U10 to U10N using
the method described by Liu and Tang [20].

The real-time, operational retrievals from the SFMR instrument cannot be used for data evaluation,
since the GMFs used for retrievals have varied over the years. The closest data to the current operational
SFMR retrievals are those from the NOAA Hurricane Research Division (HRD) [21]. This manuscript
makes use of these retrievals from HRD as an independent baseline implementation on which
improvements are made. We have also implemented [8,10,13] as described for additional comparison.

Due to changes to the wind-speed algorithm, the values of the parameters for rain-rate retrieval
are necessarily changed. Since the authors of [8] performed significant validation tests on the HRD
rain-rate retrievals, we modify the liquid water parameters to match the HRD rain-rate retrievals in
regions where there is high confidence in the retrieval.

2.3. Wind Excess Emissivity Model Revision

We originally sought to reproduce the results of [8] while including the most recent dropsonde
and SFMR collocations, using a consistent source of SST and salinity, and updating atmospheric and
ocean models as needed. During the analysis, a 10% low wind speed bias was observed with respect
to dropsondes between 15 and 45 m s−1. This bias, as well as the apparent rain contamination of
wind-speed retrievals shown in the end of [8], suggests new GMFs are needed.

Since the SFMR Tbs have a strong response to both ocean-surface wind speed and rain rate, the
general methodology for developing new GMFs has been to split this problem in two steps [1,8,13].
First, a wind-speed-only GMF is derived in low-rain scenarios where the contributions of liquid water
to Tb can be minimized. Second, higher rain-rate scenarios are allowed to derive the liquid water
absorption coefficient using the new wind speed GMF. The present section addresses the first step;
Section 2.4 addresses the second.

We have corrected this observed bias through the development of new GMFs and have reprocessed
all available SFMR data. The remainder of this paper is a summary of the methodology and
results of these efforts. The models developed in this manuscript will be referred to as “STAR” to
distinguish them from others since the development work was primarily performed at the Center for
Satellite Applications and Research (STAR) of the NOAA National Environmental Satellite, Data, and
Information Service (NESDIS).

2.3.1. Calibration

An ocean calibration is performed each year prior to hurricane season for each instrument, in
addition to a lab calibration done occasionally at ProSensing. The general procedure for the ocean
calibration is to fly the instrument over a rain-free area of ocean with known constant geophysical
parameters (e.g., wind speed, SST, salinity) at a time of day when sun glint is not a consideration.
Perhaps most importantly, wind speed must be low (<10 m s−1) so any small changes or uncertainties
in wind speed do not affect calibration. The geophysical response to wind speed is very small from 0
to 10 m s−1, so small inaccuracies in the true wind speed will not significantly change the brightness
temperature. The area is overflown multiple times at different altitudes to change the SFMR internal
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temperatures. These physical temperatures are used to convert from analog-to-digital converter
“counts” to brightness temperatures via a set of constants and the so-called SFMR calibration equation,
similar to that described in [22]. The ideal Tbs are computed using the known states of the ocean and
atmosphere. A few constants in the calibration equation related to the changing temperatures are then
adjusted as necessary so that the SFMR-output Tbs match the ideal Tbs from the SFMR RTM. For this
manuscript we only use SFMR data that have been properly calibrated, and we have verified that this
is the case for all flights analyzed.

2.3.2. Sensitivity of the SFMR Retrieval to Brightness Temperature Accuracy

To determine the sensitivity of the SFMR retrieval process to differences between the SFMR
measurements and the SFMR GMF (i.e., calibration/tuning errors), a Monte-Carlo simulation that
models the SFMR measurements and retrieval process was developed. This simulator allowed
us to study the sensitivity of SFMR retrievals to various parameters including the SFMR GMF
coefficients, environmental conditions, and measurement geometries. Figure 1 shows a block diagram
of the simulator.
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Figure 1. Block diagram for the Monte-Carlo simulation used to estimate the sensitivity to the
calibration/tuning error.
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The simulator consists of three primary engines. The first engine generates Tb estimates using
the SFMR GMF described above and allows the platform and environment data (including wind
speed and rain rate) to be inputted into the GMF. Also, it enables control of the various parameters
governing the rain and ocean-surface emissivity and absorption models to study the sensitivity of
the retrieval process to the GMF itself. The second engine models the instrument (measurement
precision and sampling) and errors in the calibration/tuning process. It generates a specified number
of brightness temperature realizations (i.e., Monte-Carlo simulation). The third engine implements the
SFMR retrieval. For each simulation run, five hundred independent realizations are produced at seven
different wind speeds (17, 25.7, 33.4, 49.4, 58.6, 69.4, and 84.9 m s−1) and six different rain rates (0, 5,
10, 20, 30, and 40 mm h−1). Please note that the wind speeds correspond to the boundaries for gale,
storm, and hurricane (categories 1 through 5) force winds. From these independent realizations, the
mean and standard deviation of the retrieval products are calculated at each wind speed and rain rate.
Properties of the distribution and the distribution of the retrievals are also calculated.

The tuning error is defined as the mean difference between the measured Tb and the SFMR GMF
predicted value. Using the simulator, the impact that tuning errors have on the retrieval process was
evaluated. Different combinations of tuning errors were introduced, while all other parameters were
held constant. This evaluation was performed for 42 different wind-speed and rain-rate combinations.
Each of the six channels were allowed a tuning error of −1.0, −0.5, 0.0, 0.5 or 1.0 K which resulted
in 15,625 different possible combinations of tuning errors, each evaluated for 42 different wind and
rain combinations (a total of 656,250 cases with each case containing 500 realizations). Figure 2 plots
the rain-rate bias error versus the U10N bias error for the different wind conditions with a true rain
rate of 10 mm h−1. Once again note that the points plotted represent the 15,625 different tuning errors
evaluated, and thus the points in the plots should not be thought of as a distribution or scatter, but
rather each point represents the bias in the retrievals for a particular tuning error. This means that the
error in retrievals will not decrease given more scenes or a longer averaging time (assuming constant
wind speed and rain rate). Clearly the wind-speed and rain-rate bias errors are correlated and depend
on the tuning error.

These results have two important implications. First, the GMF must accurately describe both the
wind-speed and rain-rate dependence. That is, even if the mean difference between the measured
brightness temperatures and those predicted by the GMF is bound to 1 K, the SFMR retrieval under
gale-force winds may underestimate the wind speed by up to 6 m s−1 or may overestimate the mean
wind speed by 4 m s−1, depending on the tuning error and precipitation. Likewise, for hurricane-force
winds, the mean wind speed can be underestimated or overestimated by up to 3 m s−1. Note this is a
bias error and not the standard deviation or uncertainty. Second, the SFMR radiometric calibration must
be very accurate. Small calibration errors causing some channels to be too high and others to be too
low can introduce biases in the wind-speed retrieval because the calibration errors produce or detract
from the true rain signature, which has strong frequency dependence. With the current calibration
approach, the offset terms in the SFMR calibration equation are tuned to bring the measurements into
agreement with the model. However, this does not evaluate the gain coefficients in the calibration
equation. A more robust approach that verifies calibration over different wind and rain conditions
is needed but will not be addressed in this paper. We apply a bias-correction procedure to the Tbs to
correct the tuning error; see Appendix B for details on the implementation.
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Figure 2. Rain-rate bias error versus the 10 m ocean-surface wind-speed bias error with a true rain rate
of 10 mm h−1 and the different wind conditions labeled in each panel. Each SFMR channel was allowed
a tuning error of −1.0, −0.5, 0.0, 0.5 or 1.0 K, resulting in 15,625 different cases for each wind condition.

2.3.3. Supporting Models

The SFMR algorithm depends on a few ancillary models to estimate the non-wind and non-rain
Tb of the scene. Here we revise the smooth-surface ocean emissivity and atmospheric transmissivity
models to reflect recent advances in the literature. These are intentionally developed to have no impact
on current ocean calibration procedures, so the algorithms and methods used by SFMR operators do
not need to be modified.

At low wind speeds, the Tbs observed by SFMR are dominated by the smooth-surface ocean
emissivity (εs). εs is a function of frequency, EIA, SST, and salinity. The Klein-Swift model [23] has been
used since the inception of SFMR to describe the smooth-surface ocean emissivity. Since this model
was developed others have been published using Tbs from satellite microwave radiometers, such as
the Remote Sensing Systems (RSS) RTM [9]. As this is a comprehensive model developed to include
nadir and off-nadir incidence angles as well as a large range of SSTs, we use this model instead of
Klein and Swift [23] in the remainder of this paper.

Changing the smooth-surface emissivity model would be a problem for the ocean calibration
of historical data since it is a relatively large contributor to the Tbs measured and modeled during
this procedure. To compensate, the RSS emissivity model of [9] is adjusted such that it agrees with



Remote Sens. 2019, 11, 214 9 of 26

Klein-Swift at 7.09 GHz, 29 ◦C, and 36 psu salinity. This amounts to subtracting 1.791× 10−3 from the
RSS smooth-surface emissivity model output.

The SFMR algorithm also requires knowledge of the atmospheric transmissivities below and
above the aircraft. They are currently modeled by

τa,∞ = 9.9456× 10−1 − 1.0505× 10−3 f (9)

τa,a = τ
1−exp(Hx sec θ)
a,∞ , (10)

where x = 3500−1, H is the aircraft altitude in meters, and θ is the incidence angle. After estimating
the water vapor and oxygen transmissivities using the total integrated gaseous transmissivity of [24],
we concluded that these models do not have the correct frequency dependence and are slightly low.
They have been modified for use in this paper to be

τa,∞ = (1− p0) + p1 f + p2 f 2 (11)

x =
(

p3 + p4 f + p5 f 2
)−1

. (12)

The values for the coefficients are given in Table 1. As with the smooth-surface emissivity, these
need to be adjusted such that the 7.09 GHz channel is the same as the old models so that Tb calibration
remains valid. To do so, 6.281× 10−3 is subtracted from (11) and 9.536× 10−3 is subtracted from (10).
This results in a change in brightness temperatures of −1.2 to 0.5 K from [8], which is less than 1% of
the Tb from the ocean at these frequencies.

Table 1. Coefficients for the New Atmospheric Transmissivity Models.

Parameter Value

p0 2.5623·10−4

p1 5.9305·10−5

p2 −6.9957·10−5

Parameter Value

p3 1.1919·104

p4 3.1739·103

p5 −1.8665·102

2.3.4. Collocation Methodology

SFMR data taken in the tropics during the hurricane seasons from 2008 through 2018 were
collocated with dropsondes. Since consistent SFMR retrievals require the same SST and salinity source
for the entire time period, the NOAA/NCDC AVHRR Daily-OI-V2 and HYCOM GLBa0.08 models
for the time and location nearest to each point in the flight are used as the respective source. Though
SFMR Tbs are provided from the instrument after an unweighted 10 s moving average has been
applied (I. PopStefanija, personal communication), we average SFMR Tb measurements and retrievals
within consecutive 10 s-long groups to match the previous method of model development [13].

The dropsonde considered to be collocated with a particular SFMR sample is the closest one in
time that also meets the distance criteria (where dropsonde time and position are always the sample
with the lowest altitude). Collocations between SFMR and dropsondes were filtered such that the
criteria in Table 2 were met and both the SFMR and dropsonde were outside the radius of maximum
wind speed (RMW). Finally, only data that also had a valid retrieval from the HRD SFMR retrievals (as
indicated in the “validity flag” variable in the retrieval file) were retained for this comparison.
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Table 2. Filtering criteria for SFMR and dropsonde collocations in tropical cyclones.

Parameter Criteria

Time between SFMR and sonde splash ≤10 min
Distance from SFMR to sonde ≤15 km
Absolute aircraft roll angle during 10 s average <3◦

Absolute aircraft pitch angle during 10 s average <3◦

Minimum aircraft altitude ≥1 km
Sea-surface temperature ≥22 ◦C
Dropsonde fall time through 150 m layer >5 s

2.3.5. Excess Emissivity Estimation Methodology

EEW is first estimated from each channel’s measured Tb. To estimate the EEW (εe), the
smooth-surface emissivity must be removed from (1):

εe = ε− εs. (13)

εs is modeled at each SFMR frequency as described in Sections 2.1 and 2.3.3 using the collocated
SST and salinity data. To solve for εe, information about the atmosphere and intervening rain rate is
required to remove those effects from the SFMR-measured Tbs.

Liquid water absorption effects must be removed or excluded from the measured Tbs to isolate
the effects of wind speed. In previous model revisions, rain-rate retrievals from earlier GMFs were
used “in lieu of accurate, independent estimates of microwave emission by rain below the aircraft” [13].
However, this requires the assumption of values for (8) to compute τr—which will be violated when
finally implementing the wind-speed model to retrieve accurate rain rates. Klotz and Uhlhorn [8]
avoided this self-inconsistency by using the previous model’s rain rate to limit the conditions in which
EEW is estimated and reasonably assuming τr,∞ = 1 and τr,a = 1 in (1).

In our development, we decided to limit data based on the HRD rain rate and by using the
following criteria: for dropsonde wind speeds below 35 m s−1 we retained only data where rain-rate
estimates were at most 2 mm h−1, while for higher wind speeds the rain-rate threshold was raised to
10 mm h−1. This is a more stringent criterion than that of [8], in which the authors allowed any rain
rate at high (>60 m s−1) dropsonde wind speeds. Therefore, some higher wind speeds are excluded
here that [8] may have included. High rain rates, even in high-wind-speed areas, will still affect
the estimated excess emissivity since the scene is assumed to be rain-free. Even after correcting for
non-wind effects, this could introduce large wind-speed uncertainties at high wind speeds.

2.3.6. Filtering and Smoothing Methodology

Though the brightness temperatures produced by SFMR have already been averaged over 10 s,
some filtering and smoothing of the resulting retrievals decreases the influence of noise at lower wind
speeds and helps to remove errors due to sampling different parts of an extreme event while stepping
through all frequencies at higher wind speeds. Below 20 m s−1 we apply a boxcar average with a width
of 20 s on wind speed. Above 25 m s−1 we use a 5-term low-pass digital filter—0 to 0.425 Hz, or 85%
of the bandwidth of the reported data. We use a linear weight to transition between the low- and
high-wind-speed regimes. On all rain rates we apply a boxcar average of 3 s.

2.4. Rain-Absorption Model Revision

After modifying the EEW algorithm, the rain-absorption model needs to be modified due to the
simultaneous retrieval process. The goal is to maintain similar statistical properties to the HRD rain
rates (i.e., match the mean and distribution closely) while correcting for uncertainties in the supporting
geophysical models. To accomplish this, we take the HRD rain rates—rain rates retrieved by HRD
with the operational algorithm from SFMR Tbs—as truth during this GMF development. Please note
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that this process does not improve the mean accuracy of SFMR rain-rate retrievals with respect to the
physical scene. The SFMR retrievals presented here have nearly the same statistical properties as the
current operational retrievals given the measurement capabilities of the instrument.

Methodology

The same data set as in Section 2.3 was used for this procedure. As in [8], we first estimate
the transmissivity of rain, τr, in the tropical cyclone environment. This methodology requires the
assumption that the aircraft is below the freezing level to derive an equation for the rain column
transmissivity.

The total ocean-surface emissivity (ε) is calculated for this estimation from dropsonde surface
wind-speed estimates using the EEW GMF described in Section 2.3. The formulation of (A11) is used to
estimate this transmissivity and, as in [8], Newton’s method is used to solve for τr,h at each frequency.
Solutions greater than 1 were retained assuming imperfections in the models used to estimate the
transmissivity—for example, mean atmospheric air temperatures, rain temperature, and clear-air
atmospheric transmissivities—or instrument noise are present.

τr,h can be converted to τr,∞ via (A8), and then to κr by inverting (7). kr is binned into bins of width
1 mm h−1 from 0 to 10 mm h−1, 2 mm h−1 from 10 to 20 mm h−1, 5 mm h−1 from 20 to 50 mm h−1, and
20 mm h−1 above 50 mm h−1. The parameters of (8) are then fit to the estimated data means (only above
10 mm h−1; the reasons for which will be made clear in Section 3.2) using a Levenberg-Marquardt
least-squares technique. The d parameter is held constant at the current operational value of 0.06 [8].

3. Results

3.1. Excess Emissivity Due to Wind

Figure 3 shows a scatter plot of SFMR channel 5 (highest frequency) EEW (εe) as a function of
dropsonde wind speed. Each point is colored according to its corresponding HRD rain rate. The solid
line is the model developed from a straightforward application of the above methodology from the
wind-speed-binned averages, and the dashed line is the current operational model from [8]. Since
different dropsondes and slightly different filtering criteria are used, some small differences between
the two can be expected. However, the new model shown is not sufficient to correct the observed
wind-speed bias shown later in Figure 5.

The EEW estimates show a small trend with HRD-retrieved rain rate. EEW was estimated
assuming no atmospheric effects and total ocean emissivity was assumed to only be affected by SST,
salinity, and wind speed (e.g., not affected by rain) for the SFMR polarization, frequencies, and low
incidence angles. This effect is therefore an unaccounted source of Tb that remains in the εe estimate.

The most likely source is in the atmosphere: either the rain-free assumption does not apply, or the
simple atmospheric models are not sufficiently detailed or capable of resolving minute Tb changes.
Though it has long been understood that the low SFMR rain-rate retrievals (<10 mm h−1 [16] or, more
recently, <3 mm h−1 [8]) are nearing the low end of the sensitivity capabilities of the SFMR, the SFMR
retrieval algorithm still reports them. This suggests that there is some information contained in the low
rain rate retrievals, but it may not be rain rate. Regardless, if this excess Tb is not removed then it is
included in the EEW estimate, inflating what is assumed to be emissivity solely from wind effects.

It could be argued that the observed trend is in reality a wind-speed dependence that was
erroneously retrieved as rain rate. If that were the case, we would expect to see a trend with dropsonde
wind speed introduced into the retrievals using the EEW model developed from this methodology.
As we show later in Figure 5, there are no systematic biases introduced by this revision. In fact, the
existing trend with wind speed is eliminated and errors present in rain are largely reduced.
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Figure 3. Uncorrected excess emissivity due to wind as a function of dropsonde wind speed. Colors on
the small points indicate the associated HRD rain rate. Solid circles are means in 5◦ bins starting at
2 m s−1. The dashed line is the operational GMF [8] and the solid line is the GMF derived from the data
points above 10 m s−1.

The resulting EEW GMFs as functions of 10 m equivalent-neutral wind speed are shown as the
solid lines passing through the filled circles (means) in Figure 4. To obtain the GMFs, EEW data
is grouped into 5 m s−1-wide bins. The channel 5 means are fit to the coefficients in (5) using a
Levenberg-Marquardt least-squares technique. Since there are few samples at high winds, the slope for
channel 5 at 37 m s−1 (the previous a0 from (5)) is retained from the current model. The 2014 SFMR
GMFs are also shown for reference. At the lower end of the wind-speed range, the dropsonde error is
close to the measured wind speed and SFMR is not capable of reliably sensing these wind speeds. As a
result, we only use data above 10 m s−1 that have a significant number of points to generate the GMFs
for (6) and the quadratic and high-wind linear portions of (5).
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Figure 4. Corrected excess emissivity due to wind as a function of dropsonde wind speed. Also shown
are the means in 5 m s−1 bins as filled circles and a fit to the means according to (5) as a solid line. The
dashed line is the 2014 EEW model from [8]. The fit was only performed to means with a sufficient
number of samples above 10 m s−1.
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The wind-generated foam to which the SFMR is primarily sensitive does not exist below
approximately 7 m s−1, the traditional transition point of the SFMR GMF from a linear function
to a quadratic. In this manuscript the transition point was chosen such that the slope of the
frequency-independent quadratic function matches a line that intercepts the origin. As a result, the
slope of the linear portion was also allowed to vary. Referring to (5), this condition requires

a2 + a3vl + a4v2
l

vl
= a3 + 2a4vl

a2

vl
= a4vl

vl =

√∣∣∣∣ a2

a4

∣∣∣∣ ≈ 10.5 m s−1.

(14)

The a1 coefficient is derived from vl , a2, a3, and a4 to make a line from the origin meet the quadratic
at vl . The values for a0–a9 are given in Table 3.

Table 3. New Coefficients of the Model for Excess Emissivity Due to Wind.

Parameter Value

a0 54.4731
a1 1.3925·10−3

a2 6.2744·10−3

a3 1.9859·10−4

a4 5.6794·10−5

Parameter Value

a5 −1.6225·10−1

a6 6.3861·10−3

a7 3.1048·10−4

a8 −7.2806·10−5

a9 −1.5913·10−6

Figure 5 shows the wind-speed error as a function of dropsonde surface wind speed estimate,
where error is defined as the SFMR retrieval less the dropsonde-estimated U10N. Retrievals using the
model developed in this section (and, necessarily, the model from Section 2.4) are shown as empty
blue triangles. Compared to both the retrievals performed by the authors with the 2014 models and
the HRD retrievals (both of which have nearly the same characteristics), the mean error above 20 m s−1

is reduced while maintaining or improving the RMS error.
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Figure 5. Wind-speed error (SFMR - dropsonde) as a function of dropsonde surface wind-speed (U10N)
estimate for retrievals using the model from Klotz and Uhlhorn [8] (“2014 model”), the HRD dataset,
and the STAR algorithm. Please note that the STAR algorithm includes the models from Sections 2.3
and 2.4. Solid lines and symbols indicate means and dashed lines indicate the RMS error on the upper
panel. The lower panel shows a histogram of the collocated data. Only collocations where all sources
are available are included.
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Figure 6 shows these HRD (left panel) and STAR (right panel) retrievals versus dropsonde surface
wind speed as two-dimensional histograms. The number of points within each 1 by 1 m s−1 bin is
averaged and shown as a color. Histograms for each axis are shown on the outside of the corresponding
axis. The mean value of each ordinate is calculated from the points within each 1 m s−1 dropsonde
bin and is shown as a solid orange line. Both show a general trend of the 2014 model (implemented
by HRD here) to underestimate the dropsonde surface wind speed and that the STAR model better
matches the dropsondes.
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Figure 6. SFMR wind-speed error as a function of dropsonde surface wind speed (U10N) estimate for
both HRD and STAR retrievals. Points are colored by the number of points in each two-dimensional
bin. One-dimensional histograms are shown for each 1 m s−1 bin on the left for retrievals and bottom
for dropsondes. A solid orange line indicates the mean of the vertical axis for each horizontal bin.

3.2. Rain

Figure 7 shows the estimated κr from SFMR data as a function of the HRD rain-rate retrieval
on a log-log plot. The solid lines are the fits to the data for each frequency (increasing in value with
frequency) and the filled circles are the binned κr averages. Immediately noticeable is the downward
curve below 3 mm h−1, due to a lower sensitivity of the lower channels to rain at low rain rates and
thus a higher variance of κr. Though [8] provided a significant validation of higher rain-rate retrievals,
the precision of rain-rate retrievals from SFMR at and below 3 mm h−1 should not be relied upon.
The values of the absorption coefficients given in (8) are listed in Table 4.

Even though the precision may be lacking, a separate curve was fitted below 10 mm h−1 to avoid
overestimating and to improve matching of STAR retrievals to those from HRD at low rain rates.
The rain-absorption model used for rain rates below 10 mm h−1 in the STAR retrievals (κ

′
r) is

P0 = exp
(

C1 + C2 f + C3 f 2
)

(15)

P1 = exp
(

C4 + C5 f + C6 f 2
)

(16)

κ
′
r = κr exp

(
− P0

PR
1

)
, (17)

where κr is from (8) and the coefficients are listed in Tables 4 and 5.
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Figure 7. SFMR-estimated κr (using the new EEW model) as a function of collocated HRD rain rate.

Table 4. New Coefficients of the Model for Rain Absorption Above 10 mm h−1.

g c d b

1.5037·10−8 2.2005 6.0000·10−2 7.7707·10−1

Table 5. Coefficients of the Model for Rain Absorption Below 10 mm h−1.

C1 C2 C3 C4 C5 C6

10.5900 −2.7665 1.7001 · 10−1 −6.4871 · 10−2 3.5235 · 10−1 −4.4598 · 10−2

One method of verifying that the newly retrieved rain rates are comparable to the HRD-retrieved
rain rates is to use a two-dimensional histogram, shown in Figure 8. The data is colored by number
of points in each 1 mm h−1 square, and most of the data is in the low rain rate bins. The new model
generally produces the same results. Below 25 mm h−1, the STAR retrieval algorithm produces slightly
lower rain rates than the HRD retrieval algorithm, and above 25 mm h−1 STAR produces higher rain
rates. The largest discrepancies are at rain rates above 40 mm h−1, where there were few validation
data used during development of the 2014 model (less than 10% of the data shown in g 8 of [8]).

Two other methods of confirming the validity of the new model are shown in Figure 9: a
quantile-quantile plot and a mean-difference plot of the quantiles. This is a way of evaluating the
overall statistics rather than comparing retrievals from the same scene. All collocated scenes presented
in Figure 8 were used to generate quantiles for each data set. The deciles are shown starting at 10%,
as well as quantiles from 95 to 99% in 1% steps and 99 to 99.9% in 0.1% steps. The mean-difference
plot shows the difference between the quantiles of the two datasets as a function of the means of
each quantile pair. For example, the 10% quantile is plotted between 0.1 and 0.2 mm h−1 on the
horizontal axis because the HRD value is approximately 0.03 and the value for the STAR retrievals is
approximately 0.3.

These plots show that for the lowest 80% of the data (<9 mm h−1), the new retrievals are higher
than the HRD retrievals by less than 0.5 mm h−1. This is the same behavior as when the model from [8]
is implemented and compared against the HRD retrievals in the same way (e.g., the “2014 model”
shown in Figure 5). For the lowest 98% of the data (<35 mm h−1), the new retrievals are different from
the HRD retrievals by at most 2 mm h−1. Up to 40 mm h−1, the STAR retrievals are up to 4 mm h−1
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(< 10%) higher than HRD. Though there are some differences in the output of the two retrieval
algorithms, the differences are small (<2 mm h−1) in the regime where there are the most data. The
rain rates output by the new model still represent the physical scene as well as SFMR can measure
given its spatial and temporal footprint.
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Figure 8. Two-dimensional histogram of the HRD rain rate vs. rain rate produced by the model
developed in this manuscript from all collocated data available. The solid gray line shows the mean in
each 1 mm h−1 bin on the horizontal axis.
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Figure 9. Rain-rate distribution comparisons between the STAR retrievals and the HRD retrievals from
all collocated data available. The left panel shows a log-log quantile-quantile plot comparing the STAR
and the HRD retrievals. The right panel shows the mean-difference plot of the same two datasets with
only the horizontal axis shown in a logarithmic scale. The lowest quantile shown is the 10% quantile
with the remainder increasing in 10% steps up to 90%, then in 1% steps up to 99%, then in 0.1% steps
up to 99.9%.

Figure 10 shows a comparison two-dimensional histogram between all collocated HRD and
STAR wind-speed retrievals. A solid gray line shows the mean HRD wind speed for each wind speed
retrieved by the new model. Above 15 m s−1 the STAR-model-retrieved wind speeds tend to exceed
those retrieved by HRD. The maximum difference in the mean between the two is approximately
5 m s−1, which occurs at the highest wind speeds shown.

Figure 11 shows a comparison similar to the one at the end of [8] (i.e., Figure 14). There is a different
selection of data used here, so some differences can be expected. The plots show wind-speed error
(SFMR minus dropsonde U10N) versus the rain rate retrieved by each of three algorithms: the “2014
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model” described in [8], HRD, and STAR. The latter two have some additional filtering implemented
beyond what is described in [8].
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Figure 10. Two-dimensional histogram of the HRD wind speed vs. wind speed produced by the model
developed in this manuscript from all collocated data available. The solid gray line shows the mean in
each 1 m s−1 bin on the horizontal axis. The solid red line is the y = x line.

These figures suggest that rain above 10 mm h−1 do not necessarily indicate a high bias, sometimes
called “rain contamination”, in the wind-speed retrievals. However, unlike [8], very little bias in the
mean is found below approximately 45 mm h−1 in tropical storm conditions for either the HRD or
STAR retrievals—though the retrievals performed by the authors just using the 2014 model more
closely resemble their results. This suggests a rain-rate-dependent wind-speed correction is being
applied to the HRD retrievals.

In “Category 1” hurricane conditions the HRD algorithm is generally biased low compared to
dropsondes, but the STAR algorithm shows no wind-speed bias for rain rates up to at least 45 mm h−1.
An important feature of the STAR retrievals is the lack of bias at rain rates below this threshold, which
shows that rain does not necessarily contaminate SFMR wind-speed retrievals. Additionally, the RMS
error for the STAR retrievals is lower than that of HRD up to 45 mm h−1, which is a reversal from the
lower-wind observations. As a result of these data, we consider wind-speed retrievals questionable
where the rain rate is at least 45 mm h−1.

In tropical storm conditions, there is no mean bias in the STAR algorithm below 45 mm h−1.
Surprisingly, there is not as significant rain influence on wind-speed retrievals in low-wind (“Tropical
Depression”) scenarios, though we would caution against using any SFMR wind-speed retrievals in
this wind-speed regime. As a general rule, we suggest that the precision of wind-speed retrievals
below 15 m s−1 should not be relied upon.

There is slightly more spread in the STAR retrievals (RMS errors) in the two lower-wind regimes
compared to those from HRD. This is likely due to the differences in smoothing or filtering of the retrieval
algorithms. The STAR filtering criteria were chosen to retain high-wind gradients while reducing
geophysical and system noise and thus can be expected to exhibit more scatter at all wind speeds.

Tables 6–8 show means, standard deviations, and number of samples of SFMR errors (versus
dropsondes) within selected wind-speed and rain-rate bins. As shown on the above plots, the STAR
mean errors are generally closer to 0 than those from HRD except in the highest rain-rate group
(≥30 mm h−1). The increased spread of the STAR retrievals is evident in that the standard deviations
are slightly higher in all regimes.
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Figure 11. Wind-speed error (SFMR - dropsonde) as a function of rain rate for selected wind-speed
regimes. From top to bottom the rows show results from tropical depression conditions (9 to 17 m s−1),
tropical storm conditions (14 to 22 m s−1), and hurricane conditions (29 to 37 m s−1). The plots show
wind-speed error means (solid lines) and RMS errors (dashed lines) versus the retrieved rain rate for the
authors’ implementation of the 2014 model [8], the HRD retrievals, and the STAR algorithm. Differences
between the “2014 model” and the HRD retrievals suggest a rain-rate-dependent wind-speed correction
is being applied to the HRD retrievals.
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Table 6. Wind-Speed Retrieval Error Means for the HRD and STAR Algorithms.

Rain Rate (mm h−1) 0 to 5 5 to 10 10 to 20

Wind Speed m s−1 HRD STAR HRD STAR HRD STAR

15–20 −7.83·10−1 1.94·10−1 4.72·10−1 1.57·10−1 1.28 −1.82·10−1

20–25 −1.99 −2.84·10−2 −1.25 −3.53·10−1 2.47·10−1 1.03
25–30 −2.40 5.26·10−1 −1.79 −1.53·10−1 −1.62 −3.66·10−3

30–40 −3.87 −4.09·10−1 −3.67 −4.70·10−1 −1.48 1.70
≥ 40 −8.75 −8.54 −5.75 −1.79 −5.09 −1.27

Rain Rate (mm h−1) 20 to 30 ≥30

Wind Speed m s−1 HRD STAR HRD STAR

15–20 1.82 −3.39·10−1 −1.79 −6.90
20–25 7.00·10−1 −1.79·10−1 1.67 −1.03
25–30 −2.18 −1.35 −1.93 −3.70
30–40 −1.92 7.05·10−1 −2.74 −2.17
≥ 40 −5.76 −1.09 −4.31 −3.71

Table 7. Wind-Speed Retrieval Error Standard Deviations for the HRD and STAR Algorithms.

Rain Rate (mm h−1) 0 to 5 5 to 10 10 to 20 20 to 30 ≥30

Wind Speed m s−1 HRD STAR HRD STAR HRD STAR HRD STAR HRD STAR

15–20 2.70 3.17 2.92 4.05 3.18 3.64 3.77 4.85 4.34 5.64
20–25 2.52 2.99 2.36 2.93 2.69 3.82 2.90 2.94 3.68 4.67
25–30 3.06 3.61 3.31 4.06 3.50 4.45 4.88 5.54 6.11 9.19
30–40 3.71 4.26 4.07 4.66 4.27 4.32 4.19 5.06 6.19 6.85
≥40 8.48 10.21 5.66 6.68 6.07 6.05 7.41 8.14 6.88 7.43

Table 8. Wind-Speed Retrieval Error Counts for the HRD and STAR Algorithms.

Rain Rate (mm h−1) 0 to 5 5 to 10 10 to 20 20 to 30 ≥30

Wind Speed m s−1 HRD STAR HRD STAR HRD STAR HRD STAR HRD STAR

15–20 2982 2966 510 550 129 106 45 39 26 33
20–25 1632 1635 399 423 162 151 62 45 20 25
25–30 479 483 190 219 185 157 55 48 57 61
30–40 197 176 183 216 118 107 70 69 60 59
≥40 30 17 40 48 73 73 29 33 92 91

4. Discussion

The results above show improvement of SFMR wind-speed retrievals compared to
dropwindsondes in tropical storm to hurricane wind conditions. Compared to the most recent revision
of the operational SFMR GMFs [8], the wind-speed differences between retrievals and dropsondes were
reduced by as much as 10% at wind speeds in excess of 45 m s−1. Additionally, the GMFs presented
in this manuscript improve the biases experienced in rain—also referred to as “rain contamination.”
These changes result in generally higher wind-speed retrievals in high-wind conditions and lower
retrievals at wind speeds less than 15 m s−1. However, due to the low sensitivity of SFMR to wind
speed at low surface wind speeds relative to other small-scale roughness factors the precision of these
low-wind retrievals is highly questionable.

Improving wind-speed retrievals required a change to the C-band liquid water absorption
coefficient model used to retrieve rain rate, due to the simultaneous nature of the retrieval algorithm.
The rain rates generally remained the same, as far as they could be reasonably validated. Above
25 mm h−1, the rain-rate retrievals from the GMF presented here are higher than those from the current
operational model by up to 10 mm h−1. However, this is the regime in which there are the fewest
data for validation; certainly, this is an area of possible improvement for a collocated rain-sensing
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instrument, such as a radar or precipitation sensor collocated with SFMR on an aircraft. Due to the
weak response of precipitation at C-band at rain rates lower than 3 mm h−1, low-rain retrievals cannot
be relied upon to be accurate.

One limitation of the instrument is the frequency stepping operation and internal brightness
temperature smoothing. While they have their advantages, they smear or overlook sharp wind
gradients and small rain bands. This ultimately limits the resolution of SFMR. A microwave radiometer
that samples C-band frequencies simultaneously (e.g., [25]) could help to identify some geophysical
limitations of the historical SFMR archive.

Roughness effects due to the splash of precipitation and sea state have not been accounted for
in the SFMR RTM. At the wind speeds typically measured by SFMR and used by researchers and
forecasters (>20 m s−1), the roughening effect of precipitation has a significantly weaker contribution
than the wind-generated foam on the brightness temperature observed by the instrument. In this
manuscript we go one step towards including these modifications to surface emissivity in the RTM by
adding the Ω term to (4). However, there likely remain residual roughness effects due to rain and sea
state and they should be investigated more quantitatively. As a result, the retrieval errors dependent
on these factors (e.g., storm quadrant [10]) remain unaddressed.

Atmospheric and smooth-surface emissivity models were brought more in line with the current
literature, but they are still only models. In particular, the downwelling radiation or atmospheric
profiles from above the aircraft could be measured to study possible improvements to surface
wind-speed and rain-rate estimation.

5. Conclusions

Since the deployment of the Stepped Frequency Microwave Radiometer (SFMR) as an instrument
used in operational forecasting and warning, hurricane reconnaissance and research aircraft have been
providing near real-time observations of the 10 m equivalent-neutral ocean-surface wind speed in and
around tropical storms and cyclones. Hurricane specialists use these data to assist in determining wind
radii and maximum sustained winds—critical parameters for determining and issuing watches and
warnings. These observations are also being used for post-storm analysis, model validation, and even
ground truth for aircraft- and satellite-based wind sensors; the international ocean winds community
will increasingly rely on SFMR for high-wind calibration and validation. It is imperative that any
errors in these observations be understood and reduced as much as possible. Uncertainty in the SFMR
brightness temperature measurements can have significant implications on the near real-time use of
SFMR data for tropical cyclone forecasting, post-storm analysis, and climatological studies.

SFMR retrievals from the most recent SFMR geophysical model function (GMF) show a 10% low
wind speed bias when compared with global positioning system dropsondes up to 45 m s−1. Correcting
this primarily required correction to the excess emissivity due to wind (EEW) model. In the process we
updated the atmospheric and smooth-surface ocean emissivity models at C-band. A new fit of the EEW and
rain-absorption coefficients used in the SFMR retrieval algorithm removed the wind-speed bias observed
with the dropsondes. So-called “rain contamination” of the retrieved wind speed below 45 mm h−1,
described in [8], was also removed. There remains a low precision for low wind speed (<15 m s−1) and
low rain rate (<10 mm h−1) retrievals, but these are due to hardware limitations of the instrument and
geophysical effects that must be better understood. Though there are few reference wind speeds above
45 m s−1 available for validation, the new SFMR retrievals are consistent with those that do exist.

Implementing these new models in both the operational and post-processing SFMR retrieval
algorithms will result in improved and consistent SFMR wind and rain-rate measurements to support
tropical cyclone forecasting and subsequent climate studies. To support operational use of unbiased
SFMR wind and rain-rate measurements, we recommend that these newly developed models be
implemented in the operational SFMR retrieval algorithm. We also recommend that the calibration
procedure remain unchanged, as consistency throughout the data record is critical. These models were
developed to not require changes to the ocean calibration procedures.
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The NOAA/NESDIS Ocean Surface Winds Team makes available a database of all files produced
by the methods described in this manuscript. The data files have a consistent set of variables with
metadata complying with the CF-1.6 standards. Supplementary data (e.g., sea-surface temperature
(SST) and salinity) are from a consistent source for the entire time span of the data and are documented
in each file. A quality flag is provided which indicates invalid and questionable retrievals (e.g., when
rain rates above 45 mm h−1 are retrieved). Data are available at https://manati.star.nesdis.noaa.gov/
SFMR.
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Abbreviations

The following abbreviations are used in this manuscript:

AFRC U.S. Air Force Reserve Command
EEW excess emissivity due to wind
EIA Earth-incidence angle
GMF geophysical model function
HRD NOAA Hurricane Research Division
NESDIS National Environmental Satellite, Data, and Information Service
NHC National Hurricane Center
NOAA National Oceanic and Atmospheric Administration
RFI radio frequency interference
RSS Remote Sensing Systems
RTM radiative transfer model
SFMR Stepped Frequency Microwave Radiometer
SST sea-surface temperature
STAR Center for Satellite Applications and Research
Tb brightness temperature

Appendix A. Rain Transmissivity Estimation Derivation

The SFMR radiative transfer model (RTM) gives the total brightness temperature observed as

Tb = τr,aτa,a

(
Tb,ocean + (1− ε)Tb,sky

)
+ Tb,up, (A1)

where

Tb,ocean = εTS (A2)

Tb,sky = Tb,down + τr,∞τa,∞Tb,cos + Tb,scat (A3)

Tb,down = (1− τr,∞)〈Tr,∞〉+ τr,∞〈Ta,∞〉(1− τa,∞) (A4)

Tb,up = (1− τr,aτa,a) 〈Ta,a〉, (A5)

https://manati.star.nesdis.noaa.gov/SFMR
https://manati.star.nesdis.noaa.gov/SFMR
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and Tb,cos = 2.73 K. We will solve for τr,a, the transmissivity of the atmosphere below the aircraft. (A1)
becomes

Tb = τr,a

[
τa,a

(
εTS + (1− ε)Tb,sky − 〈Ta,a〉

)]
+ 〈Ta,a〉

= τr,aτa,a (εTS − 〈Ta,a〉) + τr,aτa,a(1− ε)Tb,sky + 〈Ta,a〉,
(A6)

which, when combining all terms on one side of the equation, becomes:

Tb − 〈Ta,a〉
+ τa,aτr,a (〈Ta,a〉 − εTS)

− τa,aτr,aTb,sky(1− ε) = 0

(A7)

τr,aτr,∞ = exp(−κh sec θ) exp(−κHr sec θ)

= exp(−κ sec θ(h + Hr))

= exp(−κh sec θ(1 +
Hr

h
))

= exp(−κh sec θ)(1+
Hr
h )

= τ
(1+ Hr

h )
r,a

(A8)

τr,aTb,sky is expanded to

τr,aTb,sky = τr,a [(1− τr,∞)〈Tr,∞〉
+ τr,∞〈Ta,∞〉(1− τa,∞)

+τr,∞τa,∞Tb,cos + Tb,scat]

= τr,a(1− τr,∞)〈Tr,∞〉
+ τr,aτr,∞〈Ta,∞〉(1− τa,∞)

+ τr,aτr,∞τa,∞Tb,cos + τr,aTb,scat

= τr,a (〈Tr,∞〉+ Tb,scat)

− τr,aτr,∞〈Tr,∞〉
+ τr,aτr,∞〈Ta,∞〉(1− τa,∞)

+ τr,aτr,∞τa,∞Tb,cos

= τr,a (〈Tr,∞〉+ Tb,scat)

− τ
(1+ Hr

h )
r,a 〈Tr,∞〉

+ τ
(1+ Hr

h )
r,a 〈Ta,∞〉(1− τa,∞)

+ τ
(1+ Hr

h )
r,a τa,∞Tb,cos

= τr,a (〈Tr,∞〉+ Tb,scat)

− τ
(1+ Hr

h )
r,a [〈Tr,∞〉 − 〈Ta,∞〉(1− τa,∞)

− τa,∞Tb,cos] .

(A9)
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So (A7) becomes

Tb − 〈Ta,a〉
+ τr,aτa,a (〈Ta,a〉 − εTS − (1− ε) (〈Tr,∞〉+ Tb,scat))

+ τ
(1+ Hr

h )
r,a τa,a (1− ε) [〈Tr,∞〉

− 〈Ta,∞〉(1− τa,∞)

−τa,∞Tb,cos] = 0.

(A10)

Finally, we arrange the equation to calculate τr,a

c0τ
(1+ Hr

h )
r,a + c1τr,a + c2 = 0, (A11)

where

c0 = τa,a(1− ε) [〈Tr,∞〉 (A12)

−〈Ta,∞〉(1− τa,∞)− τa,∞Tb,cos] ,

c1 = τa,a (〈Ta,a〉 − εTS − (1− ε)〈(Tr,∞〉+ Tb,scat)) , (A13)

c2 = Tb − 〈Ta,a〉. (A14)

Please note that though this result is similar to that presented in [8], it is not the same—even
when neglecting Tb,scat. Using their formulas resulted in unrealistically low rain transmissivities (τr)
for C-band.

Appendix B. Brightness Temperature Bias Correction

As stated in Section 2.3.2, the tuning error of the SFMR is a calibration error and is defined as the
mean difference between the measured Tb and the SFMR GMF-predicted value. This typically appears
when there is an error in deriving the calibration coefficients for a given instrument, either during the
calibration procedure or post-processing. To reduce the effects of the tuning error on wind-speed and
rain-rate retrievals, a bias-correction algorithm is run on the brightness temperatures before retrieval.

For each flight, retrievals are performed as usual. For each channel with wind speeds between 15
and 30 m s−1 and at most 3 mm h−1 of rain collected below 5 km altitude over the ocean, the following
bias estimation routine is run. The mean difference for each retrieval between measured and modeled
Tb is calculated and points more than two standard deviations away from the mean are eliminated.
From this a preliminary estimate of the per-channel tuning error is obtained. This vector of biases
is adjusted to have a mean of zero and any channel with a bias of more than 2 is omitted from
bias estimation and retrieval. These bias corrections are then applied to the measured brightness
temperatures. The final Tb used for retrieval is

Tb, f inal = Tb − Tb,bias. (A15)

Figure A1 shows histograms of measured Tb less modeled Tb for a flight with observable tuning
errors. The flight was through Hurricane Earl on 2 September 2010 by an AFRC aircraft (so no radio
frequency interference (RFI) from other scientific equipment on the aircraft is expected). This was the
first storm flight of the 2010 hurricane season for this SFMR unit, and it does not seem to have flown
often. However, the flight on 17 September 2010 by the same unit exhibits the same characteristics,
suggesting that this is not unique to the local environment (e.g., RFI from nearby transmitters) or
the storm conditions. The histograms labeled “HRD” use Tbs from the NOAA Hurricane Research
Division (HRD) SFMR data files and subtract the modeled Tbs computed from [8]. Those labeled STAR
use the retrievals and models presented in this manuscript after bias correction—the models make
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only a small difference, so the bias-correction procedure is the cause of the difference in mean error.
Channel 3 has the largest bias of close to 1 K, but the other channels still have a distribution with a
longer tail on the higher side. For all channels, the bias-correction procedure removes the mean biases
in each channel and improves the accuracy of retrievals when compared to the GMF.

Channel 0

     

0.0

0.1

0.2

0.3

0.4

R
e

la
ti
v
e

 F
re

q
u

e
n

c
y

HRD
STAR

n = 17644
n = 18762

Channel 1

     

 

 

 

 

 
n = 17627
n = 18081

Channel 2

     

 

 

 

 

 
n = 17663
n = 18856

Channel 3

−4 −2 0 2 4

0.0

0.1

0.2

0.3

0.4

R
e

la
ti
v
e

 F
re

q
u

e
n

c
y

n = 17664
n = 14118

Channel 4

−4 −2 0 2 4

 

 

 

 

 
n = 17664
n = 18894

Channel 5

−4 −2 0 2 4

 

 

 

 

 
n = 17664
n = 18595

Tb Error Density
(20100902US017)

Tb Error (Measured − Modeled) (K)

Figure A1. Tb tuning error by channel for the 20100902US017 AFRC flight. Numbers in the upper right
corner correspond to number of data points contained in each histogram. There are differences due to
different flagging and filtering criteria for each source (HRD or STAR) and for each channel.

This is implemented in the STAR post-processing algorithm, so it is not applied in real-time.
However, if this analysis is used to detect tuning biases early in the hurricane season it may be able to
be corrected for in subsequent flights.
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